
Advanced Computer Architecture CMSC 611

Homework 4

Due in class at 1.05pm, Nov 7
th

, 2012

(For Part B, you could submit an electronic file containing the output of your simulations. If you

wish to go green, then you can submit the entire Homework electronically as well. Make sure

you include the string “CMSC 611 Homework” in your subject line. Deadline remains the same)

Please DO NOT email your homework to Dr. Olano!! DO NOT include him in the CC either!!

There is a strong chance it won’t be graded if you do!! Send it only to <abhay1@umbc.edu>

PART A

1) Branch Prediction! (35 points)

We have a piece of code with three static branch instructions B1, B2 and B3 and a co-

relating branch predictor. The execution of these branches which forms the global history

is as shown in the table below.

Branch

instruction
B1 B2 B1 B2 B1 B2 B3 B1 B2 B1 B2 B3 B1

Direction T N T N T T T T N T T N N

T stands for branch Taken and N stands for branch Not Taken. This table indicates the

sequence of branch instructions and their corresponding directions during the execution (The

actual direction). You can assume that the predictor’s initial state before execution, predicts not

taken (NT) for all branches.

Fill the table below assuming a (2, 2) co-relating predictor uses only the LOCAL history to

predict the direction for branch B1.

(2, 2) Predictor using local history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T N N N N

2 N, T N T N N N N

3 T, T N T N N N N

4 T, T N T N N N T

5 T, T T T N N N T

6 T, T T N N N N T

Fill the table below assuming a (2, 1) co-relating predictor uses only the LOCAL history to

predict the direction for branch B1.

(2, 1) Predictor using local history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T T N N N

2 N, T N T T T N N

3 T, T N T T T N T

4 T, T T T T T N T

5 T, T T T T T N T

6 T, T T N T T N N

Fill the table below assuming the (2, 2) co-relating predictor uses only the GLOBAL history to

predict the direction for branch B1.

(2, 2) Predictor using global history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T N N N N

2 T, N N T N N N N

3 T, N N T N N T N

4 T, T N T N N T N

5 T, N T T N N T N

6 T, N T N N N T N

Fill the table below assuming the (2, 1) co-relating predictor uses only the GLOBAL history to

predict the direction for branch B1.

(2, 1) Predictor using global history for B1

B1

invocation

number

History

used for

prediction

Prediction

for B1

Actual

Direction

for B1

Predictor State

N, N N, T T, N T, T

1 N, N N T T N N N

2 T, N N T T N T N

3 T, N T T T N T N

4 T, T N T T N T T

5 T, N T T T N T T

6 T, N T N T N N T

2) Given (15 points)

 Cache Size = 256KB

 Block Size = 32 Bytes

 Address size = 32 bits

Calculate the size of the tag, offset and index fields and explain very briefly how you

computed your values, for a

a) Direct mapped cache –

Cache Size/Block size = total lines i.e 256KB/32 Bytes = 8192 lines which is 2
13

. So

Index is 13 to address 8192 lines since it is direct mapped. We have 32 byte block size, so

we need 5 bits as offset since 32 = 2
5
. The remaining bits = 32-13-5 = 14 = tag.

b) 8-way associative cache

There are 8 blocks in each set. So total number of sets = 8192/8 = 1024 sets which needs

index of 10 bits. Offset = 5 bits as before. Tag = 17 bits.

c) Fully associative cache

No bits for index needed since there is only one set. Offset = 5 and tag = 27

PART B – Introduction to SimpleScalar Simulator

1) Simulating a test program. (10 points)

There are a few benchmarks available and for our purposes we will use a test program

called test-math located at

~olano/simplesim-3.0/tests-pisa/bin.little/

This is the little endian PISA binary.

Run this benchmark and answer the following questions.

a) Total Number of instructions executed = 213703

b) Total number of loads and stores executed = 56899

c) Program text (code) size in bytes = 91774 bytes

d) Total first level page table misses = 34

e) Total page table accesses = 1546179

2) Branch Prediction can be simulated using sim-bpred. (40 points)

Run the program without arguments. Read and understand the arguments they take.

Answers vary.

For the 1
st
 benchmark, bimod is almost just as good as the 2-level predictor but not so

much for the second benchmark.

The increase in history size reduces the number of missed in 2-level predictor which is

sharp at first and later it slowly plateaus.

(Full points not given if you have simply said which is best based on the number of

misses)

